A Learning Analytics Methodology for Detecting Sentiment in Student Fora: A Case Study in Distance Education

Vasileios Kagklis [kagklis@gmail.com], Hellenic Open University, Anthi Karatrantou [a.karatrantou@eap.gr], University of Patras, Maria Tantoula [aria_tant@hotmail.com], Hellenic Open University, Chris T. Panagiotakopoulos [cpanag@upatras.gr], University of Patras, Vassilios S. Verykios [verykios@eap.gr], Hellenic Open University, Greece

Abstract

Online fora have become not only one of the most popular communication tools in e-learning environments, but also one of the key factors of the learning process, especially in distance learning, as they can provide to the students involved, motivation for collaboration in order to achieve a common goal. The purpose of this study is to analyse data related to the participation of postgraduate students in the online forum of their course at the Hellenic Open University. The content of the messages posted is analysed by using text mining techniques, while the network through which the students interact is processed through social network analysis techniques. Furthermore, sentiment analysis and opinion mining is applied on the same dataset. Our aim is to study students’ attitude towards the course and its features, as well as to model their sentiment behaviour over time, and finally to detect if and how this affected their overall performance. The combined knowledge attained from the aforementioned techniques can provide tutors with practical and valuable information for the structure and the content of the students’ exchanged messages, the patterns of interaction among them, the trend of sentiment polarity during the course, so as to improve the educational process.

Abstract in Greek

Οι διαδικτυακές ομάδες συζήτησης (Forum) είναι ένα από τα δημοφιλέστερα εργαλεία επικοινωνίας σε μαθησιακά περιβάλλοντα. Αποτελούν έναν από τους βασικούς παράγοντες της μαθησιακής διαδικασίας, ειδικά στην εκπαίδευση από απόσταση, καθώς παρέχουν στους συμμετέχοντες εκπαιδευόμενους τα απαραίτητα κίνητρα συνεργασίας για την επίτευξη κοινών μαθησιακών στόχων. Σκοπός αυτής της εργασίας είναι η ανάλυση δεδομένων από τη συμμετοχή μεταπτυχιακών φοιτητών του Ελληνικού Ανοικτού Πανεπιστημίου σε διαδικτυακή ομάδα συζήτησης στα πλαίσια μαθημάτων του Προγράμματος Σπουδών τους. Το περιεχόμενο των δημοσιευμένων μηνυμάτων των συμμετεχόντων αναλύθηκε χρησιμοποιώντας μεθόδους και τεχνικές εξόρυξης κειμένου, ενώ η αλληλεπίδραση των φοιτητών μελετήθηκε μέσω τεχνικών ανάλυσης κοινωνικών δικτύων. Επιπλέον, στο ίδιο σύνολο δεδομένων εφαρμόστηκαν τεχνικές ανάλυσης συναισθήματος και εξόρυξης γνώμης. Στόχος μας είναι η μελέτη της συμπεριφοράς των φοιτητών απέναντι στο μάθημα και τα χαρακτηριστικά του, καθώς και η μοντελοποίηση της συναισθηματικής τους συμπεριφοράς με την πάροδο του χρόνου  και, τέλος, η ανίχνευση του αν και κατά πόσο αυτή επηρεάζει την συνολική τους επίδοση στις σπουδές τους. Ο συνδυασμός των γνώσεων που προκύπτουν από τις προαναφερθείσες τεχνικές μπορεί να προσφέρει στους εκπαιδευτές πολύτιμες και πρακτικές πληροφορίες για τη δομή και το περιεχόμενο των μηνυμάτων που αντάλλαξαν οι φοιτητές, για τον τρόπο αλληλεπίδρασης μεταξύ των φοιτητών, για την τάση της συναισθηματικής πολικότητας τους κατά τη διάρκεια των σπουδών τους, έτσι ώστε να βελτιωθεί η εκπαιδευτική διαδικασία.

If you would like to read the entire contribution, please click here.

 

Tags

e-learning, distance learning, distance education, online learning, higher education, DE, blended learning, ICT, information and communication technology, internet, collaborative learning, learning management system, MOOC, interaction, LMS,

Current issue on De Gruyter Online

– electronic content hosting and distribution platform

EURODL is indexed by ERIC

– the Education Resources Information Center, the world's largest digital library of education literature

EURODL is indexed by DOAJ

– the Directory of Open Access Journals

EURODL is indexed by Cabells

– the Cabell's Directories

EURODL is indexed by EBSCO

– the EBSCO Publishing – EBSCOhost Online Research Databases

For new referees

If you would like to referee articles for EURODL, please write to the Chief Editor Ulrich Bernath, including a brief CV and your area of interest.